Суждение
[править]
Материал из Википедии — свободной энциклопедии

Суждение — форма мышления, в которой что-либо утверждается или отрицается о предмете, его свойствах или отношениях между предметами. Виды суждений и отношения между ними изучаются в философской логике.

В формальной и математической логике суждениям соответствуют высказывания.
Содержание
[убрать]

1 Простые и сложные суждения
1.1 Состав простого суждения
1.2 Состав сложного суждения
2 Классификация простых суждений
2.1 По качеству
2.2 По объёму
2.3 По отношению
2.4 По отношению между подлежащим и сказуемым
2.5 Другие
3 Модальность суждений
4 См. также
5 Литература

[править] Простые и сложные суждения

Простые суждения — суждения, составными частями которых являются понятия. Простое суждение можно разложить только на понятия.

Сложные суждения — суждения, составными частями которых являются простые суждения или их сочетания. Сложное суждение может рассматриваться как образование из нескольких исходных суждений, соединенных в рамках данного сложного суждения логическими союзами (связками). От того, при помощи какого союза связываются простые суждения, зависит логическая особенность сложного суждения.
[править] Состав простого суждения

Простое (атрибутивное) суждение — это суждение о принадлежности предметам свойств (атрибутов), а также суждения об отсутствии у предметов каких-либо свойств. В атрибутивном суждении могут быть выделены термины суждения — субъект, предикат, связка, квантор.

Субъект суждения — это мысль о каком-то предмете, понятие о предмете суждения (логическое подлежащее).
Предикат суждения — мысль об известной части содержания предмета, которое рассматривается в суждении (логическое сказуемое).
Логическая связка — мысль об отношении между предметом и выделенной частью его содержания (иногда только подразумевается).
Квантор — указывает, относится ли суждение ко всему объёму понятия, выражающего субъект, или только к его части: «некоторые», «все» и т. п.

[править] Состав сложного суждения

||
Сложные суждения состоят из ряда простых («Человек не стремится к тому, во что не верит, и любой энтузиазм, не подкрепляясь реальными достижениями, постепенно угасает»), каждое из которых в математической логике обозначается латинскими буквами (A, B, C, D… a, b, c, d…). В зависимости от способа образования различают конъюнктивные, дизъюнктивные, импликационные, эквивалентные и отрицательные суждения.

Дизъюнктивные суждения образуются с помощью разделительных (дизъюнктивных) логических связок (аналогичных союзу «или»). Подобно простым разделительным суждениям, они бывают:

нестрогими (нестрогая дизъюнкция), члены которой допускают совместное сосуществование («то ли…, то ли…»). Записывается как a \lor b;
строгими (строгая дизъюнкция), члены которой исключают друг друга (либо одно, либо другое). Записывается как a \dot\lor b.

Импликационные суждения образуются с помощью импликации, (эквивалентно союзу «если …, то»). Записывается как a \to b или ab. В естественном языке союз «если …, то» иногда является синонимом союза «а» («Погода изменилась и, если вчера было пасмурно, то сегодня не одной тучи») и, в таком случае, означает конъюнкцию.

Конъюнктивные суждения образуются с помощью логических связок сочетания или конъюнкции (эквивалентно запятой или союзам «и», «а», «но», «да», «хотя», «который», «зато» и другим). Записывается как a \land b.

Эквивалентные суждения указывают на тождественность частей суждения друг другу (проводят между ними знак равенства). Помимо определений, поясняющих какой-либо термин, могут быть представлены суждениями, соединенными союзами «если только», «необходимо», «достаточно» (например: «Чтобы число делилось на 3, достаточно, чтобы сумма цифр, его составляющих, делилась на 3»). Записывается как a \equiv b, a \leftrightarrow b, a b (у разных математиков по-разному, хотя математический знак тождества всё-таки \equiv).

Отрицательные суждения строятся с помощью связок отрицания «не». Записываются либо как a ~ b, либо как a b (при внутреннем отрицании типа «машина не роскошь»), а также с помощью черты над всем суждением при внешнем отрицании (опровержении): «не верно, что …» (a b).
[править] Классификация простых суждений
[править] По качеству

Утвердительные — S есть P. Пример: «Люди пристрастны к самим себе».
Отрицательные — S не есть P. Пример: «Люди не поддаются лести».

[править] По объёму

Общие — суждения, которые справедливы относительно всего объёма понятия (Все S суть P). Пример: «Все растения живут».
Частные — суждения, которые справедливы относительно части объема понятия (Некоторые S суть P). Пример: «Некоторые растения суть хвойные».

[править] По отношению

Категорические — суждения, в которых сказуемое утверждается относительно субъекта без ограничений во времени, в пространстве или обстоятельствах; безусловное суждение (S есть P). Пример: «Все люди смертны».
Условные — суждения, в которых сказуемое ограничивает отношение каким-либо условием (Если А есть В, то С есть D). Пример: «Если дождь пойдет, то почва будет мокрая». Для условных суждений
Основание — это (предыдущее) суждение, которое содержит условие.
Следствие — это (последующее) суждение, которое содержит следствие.

[править] По отношению между подлежащим и сказуемым
Логический квадрат, описывающий отношения между категорическими суждениями

Субъект и предикат суждения могут быть распределены (индекс «+») или не распределены (индекс «-»).

Распределено — когда в суждении подлежащее (S) или сказуемое (P) берется в полном объеме.
Не распределено — когда в суждении подлежащее (S) или сказуемое (P) берется не в полном объёме.

Суждения А (обще-утвердительные суждения) Распределяет свое подлежащее (S), но не распределяет свое сказуемое (P)

Объем подлежащего (S) меньше объема сказуемого (Р)

Прим.: «Все рыбы суть позвоночные»

Объемы подлежащего и сказуемого совпадают

Прим.: «Все квадраты суть параллелограммы с равными сторонами и равными углами»


Суждения Е (обще-отрицательные суждения) Распределяет как подлежащее (S), так и сказуемое (P)

В этом суждении мы отрицаем всякое совпадение между подлежащим и сказуемым

Прим.: «Ни одно насекомое не есть позвоночное»


Суждения I (частно-утвердительные суждения) Ни подлежащие (S), ни сказуемые (P) не распределены

Часть класса подлежащего входит в класс сказуемого.

Прим.: «Некоторые книги полезны»

Прим.: «Некоторые животные суть Позвоночные»


Суждения О (частно-отрицательные суждения) Распределяет свое сказуемое (Р), но не распределяет свое подлежащее (S) В этих суждениях мы обращаем внимание на то, что есть несовпадающего между ними (заштрихованная область)

Прим.: «Некоторые животные не суть позвоночные (S)»

Прим.: «Некоторые змеи не имеют ядовитых зубов (S)»


таблица распределения подлежащего и сказуемого
Подлежащее (S) Сказуемое (P)
о-у А распределено нераспределено
о-о Е распределено распределено
ч-у I нераспределено нераспределено
ч-о О нераспределено распределено

Общая классификация:

общеутвердительные (A) — одновременно общие и утвердительные («Все S+ суть P-»)
частноутвердительное (I) — частное и утвердительное («Некоторые S- суть P-») Прим: «Некоторые люди имеют черный цвет кожи»
общеотрицательное (E) — общее и отрицательные («Ни один S+ не суть P+») Прим: «Ни один человек не всеведущ»
частноотрицательное (O) — частное и отрицательное («Некоторые S- не суть P+») Прим: «Некоторые люди не имеют черного цвета кожи»

[править] Другие

Разделительные -

1) S есть или А, или В, или С

2) или А, или В, или С есть Р когда в суждении остается место неопределенности

Условно-разделительные суждения -

Если А есть В, то С есть D или Е есть F

если есть А, то есть а, или b, или с Прим: « Если кто желает получить высшее образование, то он должен учиться или в университете, или в институте, или в академии»


Суждения тождества — понятия субъекта и предиката имеют один и тот же объём. Пример: «Всякий равносторонний треугольник есть равноугольный треугольник».
Суждения подчинения — понятие с менее широким объёмом подчиняется понятию с более широким объёмом. Пример: «Собака есть домашнее животное».
Суждения отношения — именно пространства, времени, отношения. Пример: «Дом находится на улице».


Экзистенциальные суждения или суждения существования — это такие суждения, которые приписывают только лишь существование.
Аналитические суждения — суждения, в которых мы относительно субъекта высказываем нечто такое, что в нём уже содержится.
Синтетические суждения — суждения, расширяющие познание. В них не раскрывается содержание подлежащего, а присоединяется нечто новое.


[править] Модальность суждений

Основная статья: Модальная логика

Модальные понятия, или модальности — понятия, выражающие контекстную рамку суждения: время суждения, место суждения, знание о суждении, отношение говорящего к суждению.

В зависимости от модальности выделяются следующие основные виды суждений:

Проблематические — «S, вероятно, есть Р» (возможность). Пример: «Илиада есть, вероятно, продукт коллективного творчества».
Ассерторические — «S есть P» (действительность). Пример: «Киев стоит на Днепре».
Аподиктические — «S необходимо должно быть P» (необходимость). Пример: «Две прямые линии не могут замыкать пространства».